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The density per particle can be used as the fundamental
descriptor for systems with rapidly decaying external
potentials
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Abstract For systems of electrons bound by potentials that
decay faster than 1/r asymptotically, the density per particle
determines the number of electrons and therefore the electron
density. The density per particle, commonly called the shape
function, can thus be used as the fundamental descriptor of
systems with rapidly decaying external potentials. This result
is analogous to a result that is known for Coulomb potentials.
Possible extensions of the result to include broader classes of
external potentials and alternative density-like descriptors are
discussed.
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Introduction

Many descriptors satisfy a restricted Hohenberg–Kohn-like
theorem in which no two Coulombic external potentials can
have the same value for the descriptor [1–19]. The resulting
Coulomb-restricted functionals are useful in many cases,
partly because less-divergent functionals are obtained [6,
9, 20] and partly because this provides a way to treat ground
and excited states on an equal footing [1, 2, 4, 5, 7, 12–17,
21]. The proofs of these theorems usually rest on two key
results: the Kato–Steiner cusp condition [22–24] and its
excited-state generalizations [2, 7, 13, 14] (which allows
one to determine the external potential from the cusp in

the electron density and descriptors related to it) and the
characteristic asymptotic decay of the electron density
(which allows one to determine the number of electrons
and the level of excitation) [25–34]. Based on these argu-
ments, it is possible to determine the Hamiltonian—and
then, through the Schrödinger equation, all observable prop-
erties of the system—for any system whose external poten-
tial is created by a distribution of point charges,

vCoulðrÞ ¼
XL
a¼1

�qa
r � Raj j: ð1Þ

Such external potentials are called Coulombic. This type
of approach originates with Bright Wilson, who invoked it
to dismiss the Hohenberg–Kohn theorems as trivial (as
discussed by Handy [35]). In its modern form, it is primarily
associated with the work of Nagy (on excited states [1]) and
the present author, who demonstrated that the state of a
Coulomb system is determined by the density per particle,
or shape function [7],

σðrÞ ¼ ρðrÞ
N

: ð2Þ

This result revived an old idea of Bartolotti and Parr [36],
leading to a surge of research in what is often called shape
functional theory [7, 10, 11, 18, 37–45]. This result also led
to proofs that the Fukui function [8, 10, 46–48], the local
temperature and local kinetic energy [3, 49–54], the electro-
static potential [8, 55–57], and many other density-
functional descriptors [3, 8] can also be used as fundamental
descriptors for Coulomb systems.

However, all of these results hold only for the very special
case of Coulomb potentials. The purpose of this paper is to
show that the shape function, Eq. 2, also determines all

P. W. Ayers (*)
Department of Chemistry & Chemical Biology,
McMaster University,
Hamilton, Ontario, Canada
e-mail: ayers@mcmaster.ca

J Mol Model (2013) 19:2767–2771
DOI 10.1007/s00894-012-1608-8



properties of systems with external potentials that have faster-
than-Coulombic asymptotic decay, i.e., external potentials that
decay asymptotically faster than 1/r. These external potentials
can be identified using the “normalization” of the potential
[58–61],

0 ¼
Z

�1
4pr2vðrÞdr: ð3Þ

Alternatively, we can consider only those v(r) for
which, for every ε>0, there is an R such that for all r >
R, vðrÞj j < "r�1 almost everywhere. Here, r is the
distance from the center of the system, r ¼ rj j . The latter
description is somewhat more general because it does not
require the Laplacian of the external potential to be integrable.
We refer to these potentials as rapidly decaying.

The shape function determines all properties of systems
with rapidly decaying external potential

To show that σ(r) determines all properties of any electronic
system bound by a rapidly decaying external potential, an
argument from [7] is adapted. First, using the methods of
Almbladh and von Barth [32], the asymptotic decay of the
electron density in a rapidly decaying external potential is
derived. The Kohn–Sham equations are [62]

�r2

2
þ vðrÞ þ vJðrÞ þ vxcðrÞ

� �
8 iðrÞ ¼ "i8 iðrÞ

� �Nocc

i¼1

ð4Þ
where ϕi is the ith Kohn–Sham orbital, εi is the ith Kohn–
Sham orbital energy, Nocc is the number of occupied orbi-
tals, v(r) is the external potential, vJ(r) is the potential due to
the classical electrostatic repulsion between particles, and
vxc(r) is the potential due to exchange and correlation
effects. For large r, vJ and vxc fall off as N/r and −1/r,
respectively, where N is the number of electrons [32,
63–65]. The asymptotic decay of the external potential is

v rð Þ � K rð Þ
r

; ð5Þ

and, because the external potential is assumed to be rapidly
decaying,

lim|{z}
r!1

KðrÞ ¼ 0; ð6Þ

except possibly on a set of zero measure. (For example,
sometimes the external potential may have a different as-
ymptotic rate of decay on a symmetry plane of the system.)
Substituting the asymptotic behavior of v, vJ, and vxc into
Eq. 4 gives the asymptotic Kohn–Sham equations (valid far
from a finite system)

� 1

2

d2

dr2
þ 1

r
� d
dr

þ KðrÞ þ N � 1

r

� �
8 iðrÞ ¼ "i8 iðrÞ

� �Nocc

i¼1

;

ð7Þ
with the asymptotic solution

8 iðrÞ � r
�KðrÞþ1�Nffiffiffiffiffiffi

�2"i
p �1

e�
ffiffiffiffiffiffiffi�2"i

p �r: ð8Þ
The asymptotic decay of the electron density of this

system is then

ρðrÞ �
XNocc

i¼1

ni 8 iðrÞj j2 ¼
XNocc

i¼1

nir
2� �KðrÞ�Nþ1ffiffiffiffiffiffi

�2"i
p �1

� �
e�r

ffiffiffiffiffiffiffi�8"i
p

; ð9Þ

where ni is the occupation number of the ith Kohn–Sham
orbital. For large r, the density is dominated by contribu-
tions from the orbital (or orbitals) with the highest εi, since
all other contributions to the density decay exponentially
faster than these orbitals. (The one exception is on a nodal
plane of the highest-occupied molecular orbital(s); that case
requires specialized analysis [66–68].) Accordingly, for
large r,

@ ln ρðrÞð Þ
@r

	 

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�8 � "HOMO

p
þ 2

ð�KðrÞ � N þ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2 � "HOMO
p � 1

	 

1

r

� �

þ higher powers of
1

r

� �
: ð10Þ

We can find εHOMO from a formula analogous to the
result for Coulomb systems [7],

"HOMO ¼ lim|{z}
r!1

�1

8
� @ ln ρðrÞð Þ

@r

� �2
" #

: ð11Þ

Similarly,

lim|{z}
r!1

@
@ ln ρðrÞð Þ

@rf g
@ 1

rð Þ
	 


¼ lim|{z}
r!1

2 �KðrÞ�Nþ1Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2�"HOMO
p � 1

� �h i

¼ 2 �Nþ1Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2�"HOMO
p � 1
� � : ð12Þ

The second equality follows from the rapid decay of the
external potential, Eq. 6. This gives an explicit formula for
the number of electrons in terms of the asymptotic decay of
the electron density,

N ρ½ � ¼ 1þ 1

4
� lim|{z}
r!1

@ ln ρ rð Þð Þ
@r

� �
2þ @2 ln ρ rð Þð Þ

@ 1
r

� �
@r

 !
:

ð13Þ
However, because the electron density and the shape

function differ by a multiplicative constant, their logarithmic
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derivative with respect to any spatial function is the
same,

@ ln σðrÞð Þ
@gðrÞ ¼ @ ln ρðrÞð Þ � lnðNÞ½ �

@gðrÞ ¼ @ ln ρðrÞð Þ
@gðrÞ : ð14Þ

Therefore, the shape function of a system with a rapidly
decaying external potential also determines the number of
electrons,

N σ½ � ¼ 1þ 1

4
� lim|{z}
r!1

@ ln σðrÞð Þ
@r

� �
2þ @2 ln σðrÞð Þ

@ 1
r

� �
@r

 !
:

ð15Þ
This means that the electron density, ρ rð Þ ¼ N σ½ �σ rð Þ; is

also a functional of the shape function. The shape function
can then be used as the fundamental descriptor of the system
via the Hohenberg–Kohn theorem [68].

The same analysis can be performed using the equations
for the generalized overlap amplitudes instead of the Kohn–
Sham equations [25]. If one does this, one discovers that the
exponential rate of asymptotic decay of an excited-state
shape function is controlled by the ionization potential of
the excited state [7],

EðNÞ
k � E N�1ð Þ

0 ¼ lim|{z}
r!1

�1

8
� @ ln σkðrÞð Þ

@r

� �2
" #

: ð16Þ

(Again, there are exceptions to this rule in the rare but
interesting cases where the ground state of the (N–1)-elec-
tron system has zero overlap with the kth excited state of the
N-electron system [21, 25, 69], and potentially in cases
where the highest-occupied Dyson orbital has an angular
node at infinity [Gori-Giorgi P, Gal T, Baerends EJ (2012) in
preparation].) This implies that the shape function of a
system with rapidly decaying external potential determines
both the number of electrons (via Eq. 15) and the excitation
level (via Eq. 16) and permits the construction of an excited-
state shape-functional theory for this class of systems. More
interestingly, this allows the density functional theory con-
struction in [21] to be applied to systems with rapidly decay-
ing external potentials.

Discussion and extensions

An immediate and interesting extension of this result allows
shape-functional theory to be applied to potentials that decay
asymptotically asKr−1with known K. This is true of Coulomb
systems (K can be deduced from the sharpness of the cusps in
the shape function), but if one is given K for a non-Coulomb
system, then N can be determined using Eq. 12.

There are many fundamental descriptors for Coulombic
external potentials [3, 8, 10], and it is reasonable to ask

whether reactivity indicators like the Fukui function or the
local temperature might suffice as descriptors of systems
with rapidly decaying external potentials. In general, the
answer is no. The class of rapidly decaying external poten-
tials is just too large. However, if one restricts oneself to
external potentials that are created by a system of second-
order poles,

v rð Þ ¼
XM
b¼1

pb

r� Rb

 2 ; ð17Þ

then the electron density is either zero at Rβ (but in a way
that reveals the value of pβ>0) or the electron density
diverges at Rβ (but in a way that reveals the value of pβ<0).
Derivatives of the electron density (like the Fukui function)
and other related quantities (like the local temperature) should
then suffice to describe systems with external potentials of the
form described by Eq. 17.

One may also speculate as to whether there might be a
“supertheorem” that allows us to combine the result for rap-
idly decaying external potentials with the result for Coulombic
external potentials. In general, the answer is no. An explicit
counterexample is given by the shape function of the hydride
anion. This is the shape function of a two-electron Coulomb
system, but it is also the shape function of the one-electron
system whose external potential is the Kohn–Sham potential

of the hydride ion, vs rð Þ ¼ �1
2r2

ffiffiffiffiffiffiffiffiffi
σ rð Þp ffiffiffiffiffiffiffiffiffi

σ rð Þp�
. The Kohn–

Sham potential of any anion decays as r−2 or faster because the
Kohn–Sham potential decays as

vsðrÞ � �Q� 1

r
þ O

1

r2

� �
; ð18Þ

whereQ is the charge on the system. However, if one is willing
to restrict oneself to rapidly decaying potentials of the form
described by Eq. (17), a combined theory does seem to exist.
That is, given any external potential composed only of simple
poles and quadratic poles, with no two poles coinciding,

v rð Þ ¼ PL
a¼1

�qa
r�Raj j þ

PM
b¼1

pb

r�Rbj j2 Ra 6¼ Rb ; ð19Þ

the external potential can be determined by cusps (simple
poles) or zeros and divergences (quadratic poles) of the shape
function, and the number of electrons can be determined from
the asymptotic decay of the shape function. This theory cannot
be extended to excited-states because the higher-order cusp
conditions for the shape function have the same form as the
zeros associated with quadratic poles when pβ>0 [2, 7, 13, 14].
However, it is probably possible to show that reactivity indica-
tors like the Fukui function can be used as the fundamental
descriptors of systems governed by external potentials like
Eq. 19.
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Based on [7] and subsequent work by this author and
others, people often conclude that Coulombic external poten-
tials are remarkably special. Coulombic external potentials are
not that special. Indeed, for a sufficiently small class of
external potentials, there will never be two shape functions
with the same external potential. An example is the space of
rapidly decaying external potentials focused upon in this
paper. Similarly, for any sufficiently large class of external
potentials (e.g., all external potentials decaying as r−1 or
faster), there will be two different external potentials with
the same shape function (e.g., the hydride anion and the
one-electron system bound by the Kohn–Sham potential of
H−). One nice feature of the result given in this paper is that the
class of rapidly decaying external potentials is amathematical
space. The class of Coulomb potentials is not a space because
in the limit where the number of point charges goes to infinity,
Coulomb-like potentials become continuous charge distribu-
tions. However, the Coulomb class of potentials is much more
interesting for chemistry.
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